Ashton Gate Calculation Policy: Multiplication and Division

Year 1 Objectives

- Count in multiples of twos, fives and tens
- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Strategies	Concrete	Pictorial	Abstract
Counting in multiples	Concrete manipulatives and objects are used to support children counting in multiples. Use a 0-100 bead string to count in tens. Can we count forwards and backwards in tens? \qquad	Tens frames are used to support children when counting in multiples. 0 6 2 8 4 10 Grids can be used to spot and discuss patterns. Number lines can be used in conjunction with concrete resources, or with numbers.	Writing sequences with multiples of 2,5 and 10. For example: $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Making equal groups and adding to find the total	Children begin by using stories which link to concrete manipulatives to explore making equal groups.	They then progress to stories linked to pictures.	They use repeated addition to find the total of the equal groups. $2+2+2+2+2=10$ There are $\mathbf{5}$ equal groups of $\mathbf{2}$.
Doubling	Children demonstrate doubling using concrete manipulatives. Double \qquad is \qquad	Tens frames are used to represent doubling.	$1+1=2$ Double 1 is 2

Grouping	Children start with a given total of a concrete resource and make groups of an equal amount. Make equal groups of 4	Children then progress to using pictures to show their equal groups. Make equal groups of 2	Children record their understanding in sentences, not formal division at this stage. There are 8 pencils altogether. There are \square 4 pencils in each group. There are \square 2 equal groups of 4 pencils.
Sharing	Children explore sharing as a model of division. They use 1:1 correspondence to share concrete objects into equal groups.	Children then progress to using pictures to show their equal groups.	Children record their understanding in sentences, not formal division at this stage. 9 apples shared equally between 3 horses is \square

Arrays	Children begin to make arrays using concrete objects, building them up in columns or rows.	Children progress to using pictorial representations alongside concrete, with stem sentences to support their understanding. There are \qquad rows. There are \qquad counters in each row. There are \qquad counters altogether.	Children describe the arrays as repeated addition $3+3+3+3+3=15$

Year 2 Objectives

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Strategies	Concrete	Pictorial	Abstract
Equal groups	Children should be able to make equal groups with concrete resources to demonstrate their understanding of the word 'equal'.	Children move on to using pictures to represent equal groups.	Children progress to describing these equal groups first as repeated addition, then multiplication. There are \qquad 3 equal groups of \qquad 4 \square $4+$ \square 4 \square 4 $=$ 12 3 \times \square $4=$ \square 12 The multiplication symbol should be used interchangeably with the term 'lots of'

Using arrays	Children begin by using real-life objects to create arrays, then progressing to concrete manipulatives such as counters.	Children may draw counters to create a pictorial array.	Children write 2 multiplications for each array to see the commutativity of multiplication facts e.g. $5 \times 2=2 \times 5$
Sharing	Children divide by sharing concrete objects into equal groups using one-to-one correspondence. Share the 12 cubes equally into the two boxes. There are \qquad cubes altogether. There are \qquad boxes. There are \qquad cubes in each box. Can you share the 12 cubes equally into 3 boxes?	Bar models can be used to represent sharing into equal groups.	$20 \div 4=5$

Grouping	Children divide by making equal groups. They then count on to find the total number of groups. You have 30 counters. How many different ways can you put them into equal groups?	Children progress from concrete resources to pictorial representations.
15 divided into groups of 5 is equal to 3.		

Year 3 Objectives

- Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Strategies	Concrete	Pictorial	Abstract
Multiplying two-digit numbers by a one-digit number with no exchange	Children use concrete resources to represent multiplication as repeated addition.	Part-whole models are used to partition	$\begin{aligned} & 32 \times 4=3 \text { tens } \times 4+2 \text { ones } \times 4 \\ & =12 \text { tens }+8 \text { ones } \\ & =128 \end{aligned}$
Multiplying two-digit numbers by a one-digit number with exchanges	Children progress to multiplying numbers where they will need to exchange. They explore this using concrete manipulatives first.	Part-whole models are used to partition	$\begin{aligned} & 64 \times 3=6 \text { tens } \times 3+4 \text { ones } \times 3 \\ & =18 \text { tens }+12 \text { ones } \\ & =180+12=192 \end{aligned}$

| Divide 2-digit
 numbers by a
 1-digit
 number
 (no exchange) | Children partition into tens and ones, then share equally into
 groups. It is important that they divide the tens first and not
 the ones. |
| :--- | :--- | :--- | :--- | :--- |
| Dividren progress to abstract methods for | |
| division in Year 5 . | |
| numbers by a | |
| 1-digit | |
| number (with | |
| exchanges) | |

Year 4 Objectives

- Recall multiplication and division facts for multiplication tables up to 12×12
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers
- Recognise and use factor pairs and commutativity in mental calculations
- Multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Year 5 Objectives

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- Establish whether a number up to 100 is prime and recall prime numbers up to 19
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Multiply and divide numbers mentally drawing upon known facts
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

They then progress to dividing with remainders, using the same method.

Year 6 Objectives

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Perform mental calculations, including with mixed operations and large numbers
- Identify common factors, common multiples and prime numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations

Strategies	Concrete	Pictorial
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	Children revisit strategies learned in Year 5 as needed.	Children revisit strategies learned in Year 5 as needed.

Abstract

Children consolidate their knowledge of column multiplication and apply to problems in varying contexts.

